An Overview of X-ray Polarimetry of Astronomical Sources

Martin C. Weisskopf
(NASA/Marshall Space Flight Center)

Alsatian Workshop on X-ray Polarimetry, Strasbourg France, November 13, 2017
Outline

• A look to the past
 • Experimental techniques
• Electron tracking
• IXPE the mission
• IXPE the science
Why is polarization useful?

• The degree of polarization and the “position angle” depend on the conditions under which the X-rays are produced

• Thus modeling of what we see must also predict the degree of polarization and the position angle
In the beginning

- July 1968 – Lithium-block, “Thomson”-scattering polarimeter flown on an Aerobee -150 rocket
 - Target was the brightest X-ray source Sco X-1

Fig. 1. (a) Schematic representation of the polarimeter concept. (b) Mounting of the polarimeter and ancillary equipment in the rocket.
Scattering polarimeter

- Thomson cross-section approximates the angular dependence

$$
\frac{d\sigma}{d\Omega} = (e^2 / mc^2)^2 (\cos^2 \vartheta \cos^2 \varphi + \sin^2 \varphi)
$$

- From bound electrons one must account for both coherent and incoherent scattering and photoelectric absorption

$$
\begin{align*}
\frac{d\sigma_{\text{coh}}}{d\Omega} &= r_0^2 \langle \cos^2 \vartheta \cos^2 \varphi + \sin^2 \varphi \rangle |F|^2 \\
\frac{d\sigma_{\text{incoh}}}{d\Omega} &= r_0^2 \langle \cos^2 \vartheta \cos^2 \varphi + \sin^2 \varphi \rangle I
\end{align*}
$$
Thompson approximation

Cos (polar scattering angle)

Azimuthal scattering angle
Considerations

- Minimize the background
- Achieve as large a sensitivity to polarization as possible
 - Optimize the “MDP” at the 99% confidence level

\[MDP_{99}^{99}(\%) = \left(\frac{4.29 \times 10^4}{M(\%)} \right) \sqrt{(R_S + R_B)} / \sqrt{R_S^2 t} \]

- \(MDP \) is the degree of polarization detected at the 99% confidence independent of the position angle
- \(M \) is the modulation from a 100% polarized beam with \(R_B = 0 \)
Rocket 17.09 (1971)

• Two instruments in one payload!
 • Lithium scattering polarimeter
 • 4 Bragg crystal polarimeters
• 1971 Aerobee 350
 • Crab detection!
 • $P = 15\% \pm 5\%$
 • $\phi = 156 \pm 10^\circ$
Crystal polarimeters on OSO-8

- 1975 OSO-8 crystal polarimeter
- Precision measurement of integrated emission from the Crab Nebula polarization at 2.6 keV
 - $P = 19\% \pm 1\%$
 - $\phi = 156 \pm 2^\circ$ (NNE)
Compare to detailed optical results

Next came the Stellar X-ray Polarimeter (SXRP)

- Planned to fly on the Russian Spectrum-X Gamma Mission in the early 1990s

- Soviet Union Collapsed --- never launched
Breakthrough --- electron-tracking polarimeters

- The direction of the *initial* K-shell photoelectron is determined by the electric vector and the direction of the incoming photon:

\[
\frac{d\sigma}{d\Omega} = f(\zeta)r_0^2Z^5\alpha_0^4\left(\frac{mc^2}{h\nu}\right)^{7/2} 4\sqrt{2} \sin^2 \theta \cos^2 \varphi
\]

- Optical Imaging Chamber
 - Austin & Ramsey 1992

- Pixelated Gas Multiplication
 - Costa et al. 2001

- Time Projection Chamber
 - Black et al. 2007
Electron tracking

Austin and Ramsey (1992)
Site of initial ionization and Auger electron cloud produced by a 54 keV photon in a mixture of argon (90%), methane (5%), and trimethylamine (5%) at two atmospheres.
Imaging X-ray Polarimetry Explorer (IXPE)

• Three sets of identical X-ray mirror modules and imaging, polarization-sensitive detectors
IXPE new science with new capabilities

• Opens a new window on the universe — imaging (30") X-ray polarimetry

• Addresses key questions, providing new scientific results and constraints
 – What is the spin of a black hole?
 – What are the geometry and magnetic-field strength in magnetars?
 – Was our Galactic Center an Active Galactic Nucleus in the recent past?
 – What is the magnetic field structure in synchrotron X-ray sources?
 – What are the geometries and origins of X-rays from pulsars (isolated and accreting)?

• Provides powerful and unique capabilities
 – Reduces observing time by a factor of 100 compared to OSO-8
 – Simultaneously provides imaging, spectral, timing, and polarization data
 – Is free of false-polarization systematic effects at less than 0.3%
 – Enables meaningful polarization measurements for many sources of different classes
Institutions and countries involved

<table>
<thead>
<tr>
<th>Institution/Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Marshall Space Flight Center</td>
<td>PI team, project management, SE and S&MA oversight, mirror module fabrication, X-ray calibration, science operations, and data analysis and archiving</td>
</tr>
<tr>
<td>INAF</td>
<td>Polarization-sensitive imaging detector systems</td>
</tr>
<tr>
<td>LASP</td>
<td>Mission operations</td>
</tr>
<tr>
<td>Stanford University</td>
<td>Scientific theory</td>
</tr>
<tr>
<td>McGill</td>
<td>Science Working Group Co-Chair</td>
</tr>
<tr>
<td>MIT</td>
<td>Co-Investigator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td></td>
</tr>
</tbody>
</table>
The Science Team

Co-Investigators

Collaborators
IXPE mission overview

- Pegasus XL launch from Kwajalein
- Launch ready by early 2021
- 540-km circular orbit at 0° inclination
- 2-year baseline mission, 1 year extension
- Point-and-stare at known targets
- Malindi ground station (Singapore Backup)
- Mission Operations Center at CU/LASP
- Science Operations Center at MSFC
IXPE deployed

- Solar Array
- Boom w/ Thermal Sock deployed
- X-ray Shields (×3) deployed
- Metrology Camera
- Forward Star Tracker
- Aft Star Tracker
- Spacecraft w/ Avionics
- Detector Unit (×3)
- Tip/Tilt/Rotate Mechanism
- Mirror Module Assembly (×3)

5.2-m total length deployed
4.0-m focal length
- **Polarization degree**
 - \(\Pi = \text{Modulation} / \mu(E) \)
Electroformed X-ray optics @ MSFC

ART-XC (satellite)
8 Modules, 28 shells, qualified and delivered for flight in 2018

FOXSI (rocket)
7 Modules, 7/10 shells, flown in 2012 & 2014

HERO/HEROES (balloon)
8 Modules, 13/14 shells, latest flight in 2013
Replication Process

Mandrel Fabrication
1. Machine mandrel from aluminum bar
2. Coat mandrel with electroless nickel (NiP)
3. Diamond turn mandrel for sub-micron figure
4. Polish mandrel to 0.3-0.4 nm rms
5. Metrology on mandrel

Mirror Shell Fabrication
6. Passivate mandrel surface to reduce shell adhesion
7. Electroform Nickel/Cobalt shell onto mandrel
8. Separate shell from mandrel in cold water bath

NiCo electroformed mirror shells
Mirror Module Assembly

IXPE Mirror Module Assembly

- **Mirror shells (24)**
- **Housing**
- **Front Spider**

Design approach

- Uses a single rigid spider to support the 24 nested shells and attach module to structure
- Light-weight housing mainly for thermal control
- Limit (rear) spider does not support mirror shells but limits their vibrations during launch
- Mounting combs provide shell attachment points
The X-ray mirror modules

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of mirror modules</td>
<td>3</td>
</tr>
<tr>
<td>Number of shells per mirror module</td>
<td>24</td>
</tr>
<tr>
<td>Focal length</td>
<td>4000 mm</td>
</tr>
<tr>
<td>Total shell length</td>
<td>600 mm</td>
</tr>
<tr>
<td>Range of shell diameters</td>
<td>162–272 mm</td>
</tr>
<tr>
<td>Range of shell thicknesses</td>
<td>0.16–0.26 mm</td>
</tr>
<tr>
<td>Shell material</td>
<td>Electroformed nickel–cobalt alloy</td>
</tr>
<tr>
<td>Effective area per mirror module</td>
<td>230 cm² (@ 2.3 keV); >240 cm² (3–6 keV)</td>
</tr>
<tr>
<td>Angular resolution (HPD)</td>
<td>≤ 25 arcsec</td>
</tr>
<tr>
<td>Field of view (detector limited)</td>
<td>12.9 arcmin square</td>
</tr>
</tbody>
</table>
The IXPE detectors

- Window
- Initial Absorption
- GEM
- Pixel Anode
- Photoelectron Track
- DME/He Fill Gas
- Incident X-Ray
- V_{drift}
- V_{top}
- V_{bottom}

Signals Out → ADC

The polarization sensitive detectors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive area</td>
<td>$15 \text{ mm} \times 15 \text{ mm}$</td>
</tr>
<tr>
<td>Fill gas and composition</td>
<td>He/DME (20/80) @ 1 atm</td>
</tr>
<tr>
<td>Detector window</td>
<td>50-µm thick beryllium</td>
</tr>
<tr>
<td>Absorption and drift region depth</td>
<td>10 mm</td>
</tr>
<tr>
<td>GEM (gas electron multiplier)</td>
<td>copper-plated 50-µm liquid-crystal polymer</td>
</tr>
<tr>
<td>GEM hole pitch</td>
<td>50 µm triangular lattice</td>
</tr>
<tr>
<td>Number ASIC readout pixels</td>
<td>300×352</td>
</tr>
<tr>
<td>ASIC pixelated anode</td>
<td>Hexagonal @ 50-µm pitch</td>
</tr>
<tr>
<td>Spatial resolution (FWHM)</td>
<td>$\leq 123 \mu\text{m} (6.4 \text{ arcsec}) @ 2 \text{ keV}$</td>
</tr>
<tr>
<td>Energy resolution (FWHM)</td>
<td>$0.54 \text{ keV} @ 2 \text{ keV} \propto \sqrt{E}$</td>
</tr>
</tbody>
</table>
• For a micro-quasar GRX1915+105 in an accretion dominated state
 – Scattering polarizes the thermal disk emission
 – Polarization rotation is greatest for emission from inner disk
 • Inner disk is hotter, producing higher energy X-rays
 – Priors on disk orientation also constrain model

 \[a = 0.50 \pm 0.04; 0.900 \pm 0.008; 0.99800 \pm 0.00003 \]

 (200-ks observation)
Map magnetic field of synchrotron sources

• Probe sites of cosmic-ray acceleration: Cas A
 – Lines and thermal continuum dominate 1-4 keV
 – Non-thermal emission dominates 4-6 keV

Cas A image at IXPE resolution (1.5-Ms)
- Magnetar is a neutron star with magnetic field up to 10^{15} Gauss
 - Non-linear QED predicts magnetized-vacuum birefringence
 - Refractive indices of the two polarization modes differ from 1 and each other
 - Impacts polarization and position angle as functions of pulse phase
 - Example is the magnetar 1RXS J170849.0-400910, with an 11-s pulse period
 - Can easily exclude QED-off at better in 250-ks observation
Was Sgr A* recently $10^6 \times$ more active?

- Galactic Center molecular clouds (MC) are known X-ray sources
 - If MCs reflect X-rays from Sgr A* (supermassive black hole in the Galactic center)
 - X-radiation would be *highly polarized* perpendicular to plane of reflection and indicates the direction back to Sgr A*
 - Sgr A* X-ray luminosity was 10^6 larger ≈ 300 years ago
Phase-resolved polarimetry: Crab Pulsar

- Emission geometry and processes are unsettled
 - Competing models predict differing polarization behavior with pulse phase
- X-rays provide clean probe of geometry
 - process entirely different in radio band
 - We recently discovered no pulse phase-dependent variation in polarization degree and position angle @ 1.4 GHz
 - Absorption likely more prevalent in visible band
- 140-ks observation gives ample statistics to track polarization degree and position angle
IXPE imaging of AGN

- Active galaxies are powered by supermassive BHs with jets
 - Radio polarization implies the magnetic field is aligned with jet
 - Different models for electron acceleration predict different dependence in X-rays
- Two Ultra Luminous X-ray sources (one to SW on detector but not visible in 6-arcmin-square displayed region)

Region	**MDP$_{99}$**
Core | <7.0%
Jet | 10.9%
Knot A+B | 17.6%
Knot C | 16.5%
Knot F | 23.5%
Knot G | 30.9%
ULX | 14.8%

Includes effects of dilution by unpolarized diffuse emission
Capturing the imagination