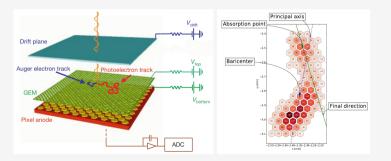


IXPE Instrument Calibration

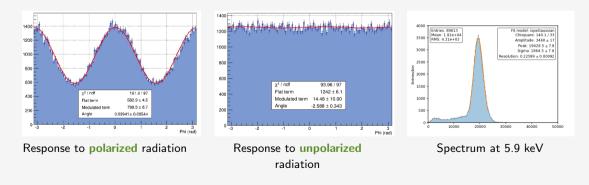
Calibration of IXPE focal plane detectors


Fabio Muleri on behalf of IXPE Italian Team fabio.muleri@inaf.it INAF-IAPS

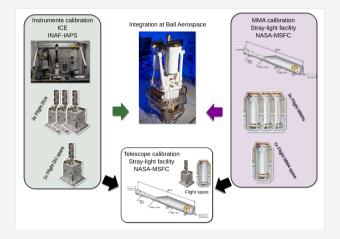
IACHEC April 2021 Plenary Sessions

2021 April 30

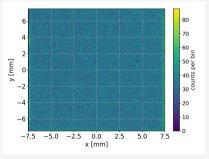
The IXPE focal plane polarimeters I


- IXPE Detector Unit (DU) are based on the Gas Pixel Detector (GPD)
 - Developed by INFN-Pisa and INAF-IAPS since 2001
 - Main Italian hardware contribution to the mission
- Response is the image of the path of the photoelectron in the gas

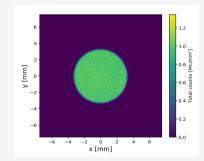
The IXPE focal plane polarimeters II


- Emission direction statistically related to the polarization of absorbed photons
- All the characteristics of the photons (direction, time of arrival, energy and polarization) are measured contemporaneously and photon by photon

Instrument Calibration

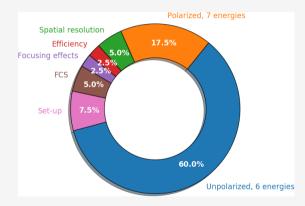

Overview of IXPE Instrument calibration

- DUs are calibrated at INAF-IAPS in Rome (Italy)
 - 3x Flight Models are delivered directly to Ball for integration
 - Spare DU (and spare MMA) are calibrated jointly at NASA-MSFC
- DU calibration possible also with on-board calibration sources

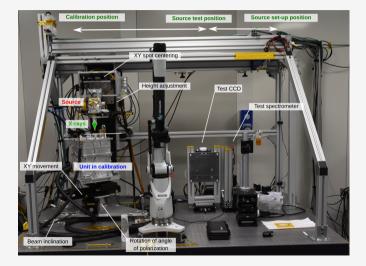


The IXPE Instrument calibration I

- Nominally, 40 days for each of the 4 DUs
- \blacksquare ${\sim}80\%$ of time dedicated to polarized and unpolarized response
 - Requirement on knownledge of the response <0.1%</p>
 - Required custom sources and procedures
- Following satellite dithering strategy, deeper calibration at the center of the field of view



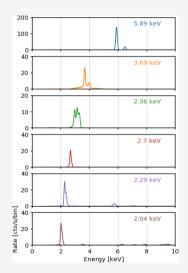
Deeper illumination in the center


The IXPE Instrument calibration II

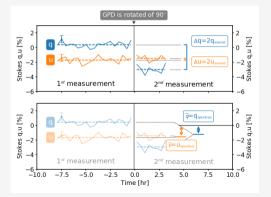
- Other calibrations:
 - ➡ Absolute quantum efficiency
 - Pixel-to-pixel equalization
 - ➡ Gain disuniformities
 - Energy resolution
 - ➡ Dead time
 - Spatial resolution
 - Response to inclined beam
- Started on 26th July 2019, last measurement on the spare on 14th September 2020
 - Source set-up and alignment during working hours, 7 days per week
 - Data acquisition round the clock with remote monitoring
 - 530 measurements, 4052.3 hr acquisition and 2.250 billion counts collect

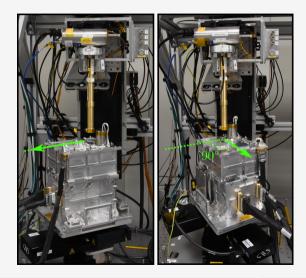
The Instrument Calibration Equipment I

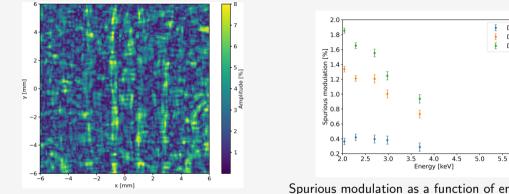
- Small facility (yet versatile and dedicated to IXPE)
- Operating in air
 - Air absorption reduced with helium flowing along photon path
- Motorized and manual stages for source and beam-to-detector alignment
- Alignment with a measurement arm
 - \blacktriangleright Positioning \simeq 10 μ m
 - \blacktriangleright Inclination $\simeq 1$ arcmin
- \blacksquare Spots from $\sim 25~\mu{\rm m}$
- Commercial SDD spectrometer and CDD for source testing


The Instrument Calibration Equipment II

IXPE clean room @ INAF-IAPS in November 2019


Response to unpolarized radiation I


- Most time-consuming measurement
 - 10⁵ cts/mm² over the entire field of view of ~225 mm² 10⁶ cts/mm² on the central ~33 mm² region
 - ➡ 6 energies
- \blacksquare Unpolarized sources were based on commercial X-ray tubes or $^{55}\mathrm{Fe}$
 - Either direct or fluorescence
 - Filters to have a spectrum largely dominated by photons at the same energy
- Often a genuine source polarization is still present depending on
 - bremsstrahlung continuum
 - X-ray tube geometry
 - Diffraction on fluorescence target

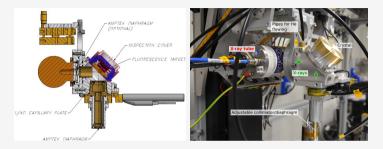

Response to unpolarized radiation II

- Two measurements to separate it from the detector response to unpolarized radiation
- Source and spurious contribution sum differently for the two measurements

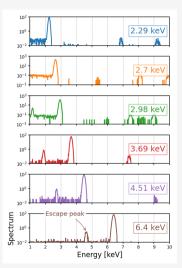
Response to unpolarized radiation III

Map of spurious modulation at 2.7 keV for DU-FM2

Spurious modulation as a function of energy on a spot with 3 mm diameter


Calibration will be applied in the pipeline running at SOC

DU2

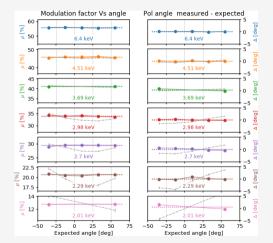

DU3 DU4

60

Response to polarized radiation I

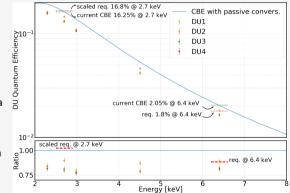


- Requirement is to collect 10⁴ cts/mm² over the entire field of view
- \blacksquare Polarized sources based on Bragg diffraction at nearly 45°
 - Truly monochromatic photons
 - Degree of polarization derived by Bragg angle
 - Different crystals to diffract photons at different energies
- Up to five polarization angles for each energy

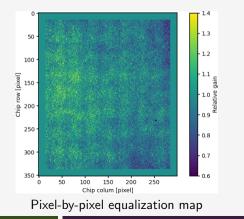


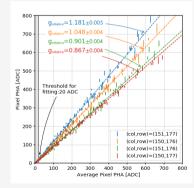
Spectrum with ICE test spectrometer

Response to polarized radiation II

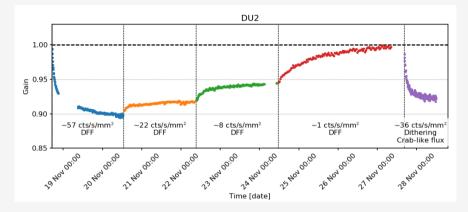

Modulation factor as a function of energy, constant over the field of view

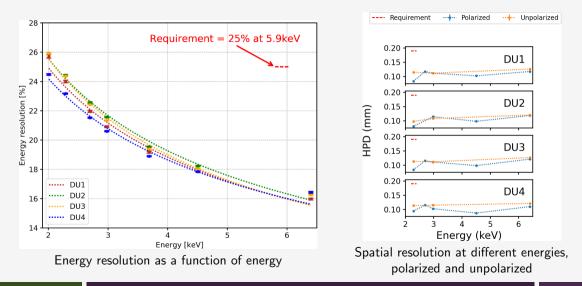
Modulation factor as a function of polarization angle, before and after calibration for the spurious modulation


Quantum efficiency

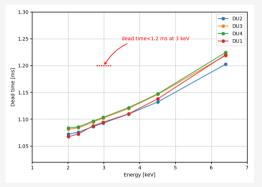

- Comparison with flux measured with a reference detector
 - Measured with monochromatic sources at 5 energies
 - \blacktriangleright Globally, absolute uncertainty ${\sim}1\%$
- Independent estimates with other techniques
 - Beam incident at known angle and imaging capabilities of the GPD
 - Relative quantum efficiency measurement with a reference source
- Measured value lower than expected
 - Now understood to be an effect of adsorption in the GPD gas cell
 - Internal pressure decreasing with time
 - Asymptotic value achieved by the launch
- Little impact on overall sensitivity

Pixel equalization

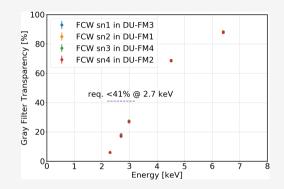

- By-product of polarimetric response calibration
- \blacksquare Gain of each of the 300 \times 352 pixels equalized with respect to others
- Rely on the peculiar read-out scheme of the GPD


Relative equalization of single pixels

Gain calibration

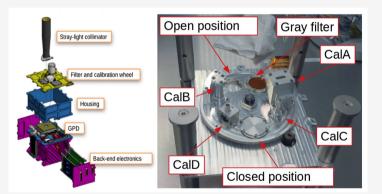


- Gain changes with illumination (Charging effect)
- Effect has been modelled
- Removed in the pipeline

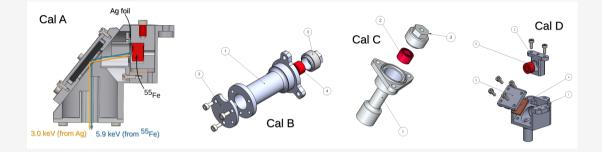

Other results I

Other results II

Dead time as a function of energy

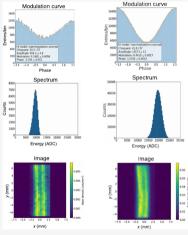


- Transparency of gray filter included in DU's FCW
- Provide flux calibration for exceptionally bright sources

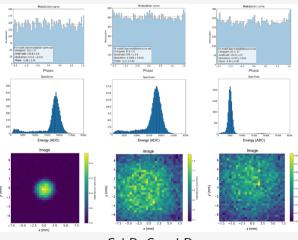

On-board calibration sources

DU Filter and Calibration Wheel

- open position for normal observations
- 1 "gray" filter for observation of exceptionally bright sources
- closed position for background measurements
- 4x sources included in each DU
 - Used for monitoring performance, on-ground and in-flight



On-board calibration sources I



	Emission	⁵⁵ Fe activity [mCi]	Notes
Cal A	polarized X-rays at 3.0 and 5.9 keV	100	Diffraction at ${\sim}38^\circ$
Cal B	unpolarized spot at 5.9 keV	20	Response to unpolarized radiation
Cal C	unpolarized flat field at 5.9 keV	0.5	Gain calibration
Cal D	unpolarized flat field at 1.7 keV	100	Gain calibration
			Response to unpolarized radiation

On-board calibration sources II

Cal A at 3.0 and 5.9 $\rm keV$

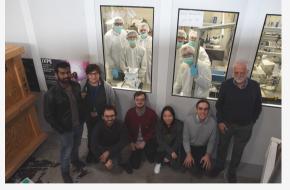
Cal B, C and D

Conclusions

- IXPE Instrument underwent an extensive on-ground calibration
 - → ~80% of time dedicated to measurements specific to IXPE
- Calibration will be monitored in-flight with on-board sources

Lessons learned:

- Calibration in-house was instrumental for successfully accomplishing the task
- Versatility allowed for adapting measurements to the peculiar needs of the detector
- The use of the second facility (ACE) allowed to recover delays in the schedule


Conclusions

- IXPE Instrument underwent an extensive on-ground calibration
 - → ~80% of time dedicated to measurements specific to IXPE
- Calibration will be monitored in-flight with on-board sources

Lessons learned:

- Calibration in-house was instrumental for successfully accomplishing the task
- Versatility allowed for adapting measurements to the peculiar needs of the detector
- The use of the second facility (ACE) allowed to recover delays in the schedule

IXPE Instrument calibration team at INAF-IAPS

Thank you for your attention!